Beattie, Webster and Chantry: A Normal

A Normal Co-ordinate Analysis of the Octahedral Species cis- and 1181. trans- $[L_2MX_4]$.

By I. R. BEATTIE, M. WEBSTER, and (in part) G. W. CHANTRY.

A normal co-ordinate analysis of the octahedral species cis- and trans-[L2MX4] is carried out by Wilson's method and the F- and G-matrix elements of the secular equations are tabulated. By disregarding off-diagonal terms in the potential-energy matrix and making reasonable assumptions about force constants, vibrational frequencies for co-ordination compounds of some tetrahalides of Group IV are approximately calculated.

WITH the increased availability of infrared (and Raman) spectrometers capable of working to about 50 cm.⁻¹ (and $\Delta v = 50$ cm.⁻¹) a combination of these two techniques has become a powerful tool for examining stereochemistry in solution, particularly for the non-transition elements where the lack of partially filled d-shells renders many other spectroscopic techniques inapplicable. The use of infrared spectroscopy in the cæsium bromide region to study the cis-trans isomerism of adducts of the type L_2MX_4 has outlined the importance of such techniques.¹ We have examined the vibrations of these two isomeric forms using Wilson's F-G matrix method.²

(1) $cis-L_2MX_4$ (C_{2n}).—Fig. 1 shows our choice of internal co-ordinates to describe the vibrations of such a molecule. The corresponding f matrix which is symmetrical about the diagonal is given in Table 1 and defines the relevant force constants. Cartesian co-ordinates being used, the representation of the molecule after the removal of translational and rotational degrees of freedom is

$$\Gamma$$
mol = 6a₁(IR,R) + 2a₂(R) + 3b₁(IR,R) + 4b₂(IR,R)

whereas using internal co-ordinates (Fig. 1) we find

$$\Gamma mol = 8a_1 + 2a_2 + 3b_1 + 5b_2$$

I. R. Beattie, G, P. McQuillan, L. Rule, and M. Webster, J., 1963, 1514; I. R. Beattie, T. Gilson,
 M. Webster, and (in part) G. P. McQuillan J., 1964, 238; I. R. Beattie and L. Rule, J., 1965, 2995.
 E. B. Wilson, jun., J. Chem. Phys., 1939, 7, 1047; 1941, 9, 76.

Co-ordinate Analysis of $[L_2MX_4]$.

View Online

6173

	$\Delta \phi_{22}^{22}$ $f'r\phi$ $f'R\phi$ $f'R\phi$	J'a¢ Ja¢ J'a¢ J'a¢ J'a¢ J'a¢ J'a¢ J'a¢ J
	$\begin{array}{c} \Delta\phi_{21} \\ f_{r\phi} \\ f'_{R\phi} \\ f_{R\phi} \\ f_{R\phi} \end{array}$	Jack Jack Jack Jose Jose Jose Jose Jose Jose Jose Jose
	$\begin{array}{c} \Delta\phi_{12}\\ f'r\phi\\ f_r\phi\\ f_R\phi\\ f'R\phi\\ f'R\phi\end{array}$	$f'_{a\phi}$ $f_{a\phi}$ $f'_{\gamma\phi}$ $f'_{\beta\phi}$ $f'_{\beta\phi}$ $f'_{\beta\phi}$ $f'_{\phi\phi}$ $f'_{\phi\phi}$ $f'_{\phi\phi}$
	$\Delta \phi_{11}$ $f_{r\phi}$ $f_{r\phi}$ $f'_{R\phi}$	f_{ab} f_{a
	Δeta_{22} f'_{reta} f'_{reta} f'_{Reta} f'_{Reta}	J' dp Jack J'76 J'66 J'66 J'66 J'66
	$\Delta \beta_{21}$ $f_{r\beta}$ $f'_{r\beta}$ $f_{R\beta}$	f_{aB}^{aB} f'_{aB}^{c} f'_{7B}^{c} f'_{7B}^{c} f_{B}^{c} f_{B}^{c}
	Δeta_{12} f_{reta} f_{reta} f_{Reta}	f' aβ fab frb frb fb fb
ix for <i>cis</i> -L ₂ MX ₄ .	Δeta_{11} f_{reta} f_{reta} f_{reta} f_{reta} f_{Reta} f_{Reta}	f ab f σab f σab f γ γ f γ γ f β
	$\Delta_{\gamma_2} f_{r\gamma} f_{r\gamma} f_{r\gamma} f_{r\gamma} f_{R\gamma} f_{R\gamma}$)' ar Jar Jor Jrr Jr
	$\Delta \gamma_1$ $f' \gamma$ $f' \gamma$ $f'' \gamma$	Jar J'ar Jor Jr
f mati	$\Delta \delta$ $f_{r\delta}$ $f_{R\delta}$ $f_{R\delta}$	j a 8 f 8 f 8
The	Δα fra fra fra	<i>f</i> άα <i>f</i> α
	∆d2 f're fre fRe	fa 1
	∆dı fra fra fRa fRa	fa
	ΔR_2 f_{rR} f_{R} f_R	
	ΔR_1 fr $_{FR}$ f_R	
	∆r2 fr	
	Δr_1 fr	
	$f \ \Delta r_1 \ \Delta r_2 \ \Delta R_1 \ \Delta R_2 \ \Delta R_2 \ \Delta R_2$	$\begin{array}{c} \Delta a_1 \\ \Delta a_2 \\ \Delta \alpha \\ \Delta$

TABLE 1.

so that there will be three redundant co-ordinates $(2a_1 + b_2)$. There are forty independent force constants in the potential-energy function.

Our ortho-normal symmetry co-ordinates, using 90° angles, were

$$a_{1} \quad S_{1} = \frac{1}{\sqrt{2}} (\Delta r_{1} + \Delta r_{2}) \qquad S_{2} = \frac{1}{\sqrt{2}} (\Delta R_{1} + \Delta R_{2}) \qquad S_{3} = \frac{1}{\sqrt{2}} (\Delta \alpha - \Delta \delta)$$

$$S_{4} = \frac{1}{2} (\Delta \alpha + \Delta \delta - \Delta \gamma_{1} - \Delta \gamma_{2})$$

$$S_{5} = \frac{1}{2\sqrt{2}} (\Delta \beta_{11} + \Delta \beta_{12} + \Delta \beta_{21} + \Delta \beta_{22} - \Delta \phi_{11} - \Delta \phi_{12} - \Delta \phi_{21} - \Delta \phi_{22})$$

$$S_{6} = \frac{1}{\sqrt{2}} (\Delta d_{1} + \Delta d_{2}) \qquad S_{6}^{*} = \frac{1}{2} (\Delta \alpha + \Delta \delta + \Delta \gamma_{1} + \Delta \gamma_{2}) \equiv 0$$

$$S_{6}^{**} = \frac{1}{2\sqrt{2}} (\Delta \beta_{11} + \Delta \beta_{12} + \Delta \beta_{21} + \Delta \beta_{22} + \Delta \phi_{11} + \Delta \phi_{12} + \Delta \phi_{22}) \equiv 0$$

$$a_{2} \quad S_{7} = \frac{1}{2} (\Delta \beta_{11} - \Delta \beta_{12} - \Delta \beta_{21} + \Delta \beta_{22}) \qquad S_{8} = \frac{1}{2} (\Delta \phi_{11} - \Delta \phi_{12} - \Delta \phi_{21} + \Delta \phi_{22})$$

$$b_{1} \quad S_{9} = \frac{1}{\sqrt{2}} (\Delta R_{1} - \Delta R_{2}) \qquad S_{10} = \frac{1}{2} (\Delta \beta_{11} + \Delta \beta_{12} - \Delta \beta_{21} - \Delta \beta_{22})$$

$$S_{11} = \frac{1}{2} (\Delta \phi_{11} + \Delta \phi_{12} - \Delta \phi_{21} - \Delta \phi_{22})$$

$$b_{2} \quad S_{12} = \frac{1}{\sqrt{2}} (\Delta \beta_{11} - \Delta \beta_{12} + \Delta \beta_{21} - \Delta \beta_{22} + \Delta \phi_{11} - \Delta \phi_{12} + \Delta \phi_{21} - \Delta \phi_{22})$$

$$S_{14} = \frac{1}{\sqrt{2}} (\Delta \gamma_{1} - \Delta \gamma_{2}) \qquad S_{15} = \frac{1}{\sqrt{2}} (\Delta d_{1} - \Delta d_{2})$$

$$S_{15}^{*} = \frac{1}{2\sqrt{2}} (-\Delta \beta_{11} + \Delta \beta_{12} - \Delta \beta_{21} + \Delta \beta_{22} + \Delta \phi_{11} - \Delta \phi_{12} + \Delta \phi_{21} - \Delta \phi_{22}) \equiv 0 \dots (1)$$

* and ** Redundant co-ordinates.

Using the appropriate matrix multiplication between equations (1) and Table 1, the following F-matrix elements result:

$$a_{1} \quad F_{11} = f_{r} + f_{rr} \qquad F_{12} = 2f_{rR} \qquad F_{13} = f_{r\alpha} - f_{r\delta}$$

$$F_{14} = \frac{1}{\sqrt{2}}(f_{r\alpha} + f_{r\delta} - f_{r\gamma} - f'_{r\gamma}) \qquad F_{15} = f_{r\beta} + f'_{r\beta} - f_{r\phi} - f'_{r\phi}; \qquad F_{16} = f_{rd} + f'_{rd}$$

$$F_{22} = f_{R} + f_{RR} \qquad F_{23} = f_{R\alpha} - f_{R\delta} \qquad F_{24} = \frac{1}{\sqrt{2}}(f_{R\alpha} + f_{R\delta} - 2f_{R\gamma})$$

$$F_{25} = f_{R\beta} + f'_{R\beta} - f_{R\phi} - f'_{R\phi} \qquad F_{26} = 2f_{Rd}$$

$$F_{33} = \frac{1}{2}(f_{\alpha} + f_{\delta} - 2f_{\alpha\delta}) \qquad F_{34} = \frac{1}{2\sqrt{2}}(f_{\alpha} - f_{\delta} - 2f_{\alpha\gamma} + 2f_{\delta\gamma})$$

$$F_{35} = f_{\alpha\beta} - f_{\alpha\phi} - f_{\delta\beta} + f_{\delta\phi}; \qquad F_{36} = f_{d\alpha} - f_{d\delta}$$

6175

$$F_{44} = \frac{1}{4} (f_{\alpha} + 2f_{\gamma} + f_{\delta} + 2f_{\alpha\delta} - 4f_{\alpha\gamma} - 4f_{\delta\gamma} + 2f_{\gamma\gamma})$$

$$F_{45} = \frac{1}{\sqrt{2}} (f_{\alpha\beta} - f_{\alpha\phi} + f_{\delta\beta} - f_{\delta\phi} - f_{\gamma\beta} - f'_{\gamma\beta} + f_{\gamma\phi} + f'_{\gamma\phi})$$

$$F_{46} = \frac{1}{\sqrt{2}} (f_{d\alpha} + f_{d\delta} - f_{d\gamma} - f'_{d\gamma})$$

$$F_{55} = \frac{1}{2} (f_{\beta} + f_{\beta\beta} + f'_{\beta\beta} + f''_{\beta\beta} - 2f_{\beta\phi} - 2f''_{\beta\phi} - 2f''_{\beta\phi} - 2f^{\circ}_{\beta\phi} + f_{\phi} + f_{\phi\phi} + f'_{\phi\phi} + f''_{\phi\phi})$$

$$F_{56} = f_{d\beta} + f'_{d\beta} - f_{d\phi} - f'_{d\phi} \qquad F_{66} = f_d + f_{dd}$$

$$a_2 \quad F_{77} = f_{\beta} - f_{\beta\beta} - f'_{\beta\beta} + f''_{\beta\beta} \qquad F_{78} = f_{\beta\phi} - f'_{\beta\phi} - f''_{\beta\phi} + f^{\circ}_{\beta\phi}$$

$$F_{88} = f_{\phi} - f_{\phi\phi} - f'_{\phi\phi} + f''_{\phi\phi}$$

$$b_1 \qquad F_{99} = f_R - f_{RR} \qquad F_{9,10} = \sqrt{2} (f_{R\beta} - f'_{R\beta}) \qquad F_{9,11} = \sqrt{2} (f_{R\phi} - f'_{R\phi})$$

$$F_{10,10} = f_{\beta} + f_{\beta\beta} - f'_{\beta\beta} - f''_{\beta\beta} \qquad F_{10,11} = f_{\beta\phi} + f'_{\beta\phi} - f''_{\beta\phi} - f^{\circ}_{\beta\phi}$$

$$b_{2} \quad F_{12,12} = f_{r} - f_{rr} \qquad F_{12,13} = f_{r\beta} - f'_{r\beta} + f_{r\phi} - f'_{r\phi}$$

$$F_{12,14} = f_{r\gamma} - f'_{r\gamma} \qquad F_{12,15} = f_{rd} - f'_{rd}$$

$$F_{13,13} = \frac{1}{2} (f_{\beta} - f_{\beta\beta} + f'_{\beta\beta} - f''_{\beta\beta} + f_{\phi} - f_{\phi\phi} + f'_{\phi\phi} - f''_{\phi\phi} + 2f_{\beta\phi} - 2f'_{\beta\phi} + 2f''_{\beta\phi} - 2f^{\circ}_{\beta\phi})$$

$$F_{13,14} = f_{\gamma\beta} - f'_{\gamma\beta} + f_{\gamma\phi} - f'_{\gamma\phi} \qquad F_{13,15} = f_{d\beta} - f'_{d\beta} + f_{d\phi}^{\gamma} - f'_{d\phi}$$

$$F_{14,14} = f_{\gamma} - f_{\gamma\gamma} \qquad F_{14,15} = f_{d\gamma} - f'_{d\gamma} \qquad F_{15,15} = f_{d} - f_{dd}$$

Similarly, by using standard techniques, the G-matrix elements are found to be $(x_1 = x_2 = x; x_3 = x_4 = x'; \mu_x = \text{reciprocal mass of } x \text{ in atomic weight units, etc.}):$

$$a_{1} \quad G_{11} = \mu_{x}' + \mu_{m} \qquad G_{12} = 0 \qquad G_{13} = -\mu_{m}(1/r + 1/d)$$

$$G_{14} = -\frac{\mu_{m}}{\sqrt{2}}(2/r - 2/d) \qquad G_{15} = -2\mu_{m}/R \qquad G_{16} = -\mu_{m}$$

$$G_{22} = \mu_{x} \qquad G_{23} = 0 \qquad G_{24} = 0 \qquad G_{25} = 0 \qquad G_{26} = 0$$

$$G_{33} = \mu_{x}'/r^{2} + \mu_{L}/d^{2} + \mu_{m}(1/r + 1/d)^{2}$$

$$G_{34} = \sqrt{2}\mu_{x}'/r^{2} - \sqrt{2}\mu_{L}/d^{2} + \sqrt{2}(1/r^{2} - 1/d^{2})\mu_{m}$$

$$G_{35} = \frac{\mu_{m}}{R}(2/r + 2/d) \qquad G_{36} = \mu_{m}(1/r + 1/d))$$

$$G_{44} = 2\mu_{x}'/r^{2} + 2\mu_{L}/d^{2} + 2\mu_{m}(1/r - 1/d)^{2} \qquad G_{45} = \frac{4\mu_{m}}{R\sqrt{2}}(1/r - 1/d)$$

$$G_{46} = \sqrt{2}\mu_{m}(1/r - 1/d)$$

$$G_{55} = 2\mu_{x}/R^{2} + 4\mu_{m}/R^{2} \qquad G_{56} = 2\mu_{m}/R \qquad G_{66} = \mu_{L} + \mu_{m}$$

$$a_{2} \qquad G_{77} = \mu_{x}/R^{2} + 2\mu_{x}'/r^{2} \qquad G_{78} = \mu_{x}/R^{2} \qquad G_{88} = \mu_{x}/R^{2} + 2\mu_{L}/d^{2}$$

Beattie, Webster and Chantry: A Normal

$$b_{1} \qquad G_{99} = \mu_{x} + 2\mu_{m} \qquad G_{9,10} = -\frac{4}{\sqrt{2}}\mu_{m}/r \qquad G_{9,11} = -4\mu_{m}/\sqrt{2d}$$

$$G_{10,10} = \mu_{x}/R^{2} + 2\mu_{x}'/r^{2} + 4\mu_{m}/r^{2} \qquad G_{10,11} = -\mu_{x}/R^{2} + 4\mu_{m}/rd$$

$$G_{11,11} = 2\mu_{L}/d^{2} + 4\mu_{m}/d^{2} + \mu_{x}/R^{2}$$

$$b_{2} \qquad G_{12,12} = \mu_{x}' + \mu_{m} \qquad G_{12,13} = -2\mu_{m}/R$$

$$G_{12,14} = -\mu_{m}(1/r + 1/d) \qquad G_{12,15} = \mu_{m}$$

$$G_{13,13} = 2\mu_{x}/R^{2} + 4\mu_{m}/R^{2} \qquad G_{13,14} = \frac{2\mu_{m}}{R}(1/r + 1/d) \qquad G_{13,15} = -2\mu_{m}/R$$

$$G_{14,14} = \mu_{x}'/r^{2} + \mu_{L}/d^{2} + \mu_{m}(1/r + 1/d)^{2} \qquad G_{14,15} = -\mu_{m}(1/r + 1/d)$$

$$G_{15,15} = \mu_{L} + \mu_{m}$$

(2) trans-L₂MX₄(D_{4h}).—Fig. 2 shows our choice of interval co-ordinates for this molecule, while the corresponding f matrix is given in Table 2. The representation of the molecule after removal of translational and rotational degrees of freedom for Cartesian co-ordinates is

$$\Gamma_{\rm mol} = 2a_{1g}({\bf R}) + 2a_{2u}({\bf IR}) + b_{1g}({\bf R}) + b_{2g}({\bf R}) + b_{2u}({\rm inactive}) + e_g({\bf R}) + 3e_u({\bf IR}),$$

whereas using internal co-ordinates (Fig. 2) we find

 $\Gamma_{\rm mol} = 4a_{1g} + 2b_{1g} + 2a_{2u} + b_{2g} + b_{2u} + e_g + 3e_u$

resulting again in three redundant co-ordinates $(2a_{1g} + b_{1g})$. In this case because of the higher symmetry there are fewer force constants necessary, only sixteen.

FIG. 2. Internal co-ordinates for trans-L₂MX₄.

Proceeding with a similar analysis, our orthonormal symmetry co-ordinates are:

$$a_{1g} \qquad S_1 = \frac{1}{2} (\Delta r_1 + \Delta r_2 + \Delta r_3 + \Delta r_4) \qquad S_2 = \frac{1}{\sqrt{2}} (\Delta d_1 + \Delta d_2)$$
$$S_2^* = (\Delta \gamma_{12} + \Delta \gamma_{23} + \Delta \gamma_{34} + \Delta \gamma_{14}) \equiv 0$$
$$S_2^{**} = \frac{1}{2} (\Delta \beta_{11} + \Delta \beta_{12} + \Delta \beta_{13} + \Delta \beta_{14} + \Delta \beta_{21} + \Delta \beta_{22} + \Delta \beta_{23} + \Delta \beta_{24}) \equiv 0$$

Co-ordinate Analysis of $[L_2MX_4]$.

	$\Delta\gamma_{14}$	fr	f'r	f' r r	frr	faγ	$f_{d\gamma}$	fвү	$f'^{\beta\gamma}$	f'вү	$f_{B\gamma}$	fвr	$f'^{B\gamma}$	f'ar	fвү	fr	J'm	ۍر ب	ž
	$\Delta\gamma_{34}$	f'r	f' n	fr	frr	fa_{γ}	$f_{d\gamma}$	$f'_{B\gamma}$	$f'^{ m B\gamma}$	fвr	$f_{B_{Y}}$	f'ar	f'BY	fвr	fвү	f' ' '	$f_{\gamma\gamma}$	f۲	
	$\Delta\gamma_{23}$	f'r	frr	frr	f' r r	far	$f_{d\gamma}$	f'^{BY}	fвr	fвү	f'_{BY}	f'_{BY}	fвr	fвr	f' B γ	fr	۶		
	$\Delta\gamma_{12}$	fry	frr	f'r	f'r	faγ	$f_{d\gamma}$	<i>f</i> вү	<i>f</i> вү	f'_{BY}	f'_{BY}	fвr	fвү	f'_{BY}	f'_{BY}	۶			
	$\Delta\beta_{24}$	f′r₿	f''rß	f'rß	frß	$f'_{a\beta}$	$f_{a\beta}$	∫°ββ	Лав	f° BB	$f''^{\sf BB}$	faa	f^{\prime} рр	fад	fß				
	$\Delta\beta_{23}$	f"rB	$f'_{r\beta}$	frß	$f'_{r\beta}$	$f'_{d\beta}$	$f_{d\beta}$	<i>f</i> † вв	$f^\circ_{ m BB}$	f''pp	f° BB	f^{\prime} вв	fвв	fa					
	$\Delta\beta_{22}$	f′rβ	frß	f′r₿	f''_r B	$f'_{d\beta}$	f_{dB}	f° рр	f''^{BB}	f° pp	f†рр	faa	fв						
k for trans-L2MX4.	$\Delta\beta_{21}$	frß	$f'_{r\beta}$	f″rβ	f′r₿	f'_{dB}	$f_{d\beta}$	<i>f″</i> вв	f° рр	<i>f</i> †вв	f° ββ	fa							
	$\Delta\beta_{14}$	f′rβ	$f''_{r\beta}$	f'rB	frβ	f_{dB}	$f'_{d\beta}$	fвв	f'рв	faa	fв								
	$\Delta\beta_{13}$	f"rB	$f'_{r\beta}$	fr₿	f'_{rB}	faβ	$f'_{d\beta}$	f'рр	fвв	fв									
matri	$\Delta\beta_{12}$	f'rß	$f_{r\beta}$	f' r B	f″r₿	$f_{d\beta}$	$f'_{d\beta}$	fag	fв										
The <i>J</i>	Δβ11	frß	J′rβ	f″rß	$f'_{r\beta}$	$f_{d\beta}$	$f'_{d\beta}$	fв											
	Δd_2	fra	fra	fra	fra	faa	fa												
	Δd_1	fra	fra	fra	fra	fa													
	Δr_4	frr	f' n	frr	f,														
	Δr_3	f'r	frr	fr															
	Δr_2	frr	fr																
	Δr_1	fr																	
	f	Δr_1	Δr_2	Δr_3	Δr_4	Δd_{1}	Δd_2	Δβ11	$\Delta\beta_{12}$	$\Delta\beta_{13}$	$\Delta\beta_{14}$	$\Delta\beta_{21}$	$\Delta\beta_{22}$	$\Delta\beta_{23}$	$\Delta\beta_{24}$	$\Delta \gamma_{12}$	$\Delta\gamma_{23}$	$\Delta\gamma_{34}$	Δγ14

TABLE 2.

$$\begin{aligned} a_{2u} \quad S_{3} &= \frac{1}{\sqrt{2}} (\Delta d_{1} - \Delta d_{2}) \\ S_{4} &= \frac{1}{2\sqrt{2}} (\Delta \beta_{11} + \Delta \beta_{12} + \Delta \beta_{13} + \Delta \beta_{14} - \Delta \beta_{21} - \Delta \beta_{22} - \Delta \beta_{23} - \Delta \beta_{24}) \\ b_{1g} \quad S_{5} &= \frac{1}{2} (\Delta r_{1} - \Delta r_{2} + \Delta r_{3} - \Delta r_{4}) \\ S_{5}^{*} &= \frac{1}{2\sqrt{2}} (-\Delta \beta_{11} + \Delta \beta_{12} - \Delta \beta_{13} + \Delta \beta_{14} - \Delta \beta_{21} + \Delta \beta_{22} - \Delta \beta_{23} + \Delta \beta_{24}) \equiv 0 \\ b_{2g} \quad S_{6} &= \frac{1}{2} (\Delta \gamma_{12} - \Delta \gamma_{23} + \Delta \gamma_{34} - \Delta \gamma_{14}) \\ b_{2u} \quad S_{7} &= \frac{1}{2\sqrt{2}} (\Delta \beta_{11} - \Delta \beta_{12} + \Delta \beta_{13} - \Delta \beta_{14} - \Delta \beta_{21} + \Delta \beta_{22} - \Delta \beta_{23} + \Delta \beta_{24}) \\ e_{g} \quad S_{8a} &= \frac{1}{2} (\Delta \beta_{12} - \Delta \beta_{14} - \Delta \beta_{22} + \Delta \beta_{24}) \\ S_{8b} &= \frac{1}{2} (\Delta \beta_{11} - \Delta \beta_{13} - \Delta \beta_{21} + \Delta \beta_{23}) \end{aligned}$$

* and ** Redundant co-ordinates.

$$e_{u} \qquad S_{9a} = \frac{1}{\sqrt{2}} (\Delta r_{1} - \Delta r_{3}) \qquad S_{9b} = \frac{1}{\sqrt{2}} (\Delta r_{2} - \Delta r_{4})$$

$$S_{10a} = \frac{1}{2} (\Delta \beta_{11} - \Delta \beta_{13} + \Delta \beta_{21} - \Delta \beta_{23}) \qquad S_{10b} = \frac{1}{2} (\Delta \beta_{12} - \Delta \beta_{14} + \Delta \beta_{22} - \Delta \beta_{24})$$

$$S_{11a} = \frac{1}{2} (\Delta \gamma_{12} + \Delta \gamma_{14} - \Delta \gamma_{23} - \Delta \gamma_{34}) \qquad S_{11b} = \frac{1}{2} (\Delta \gamma_{12} - \Delta \gamma_{14} + \Delta \gamma_{23} - \Delta \gamma_{34})$$

F-matrix elements:

 b_{1g} $G_{55} = \mu_x$

$$\begin{array}{ll} a_{1g} & F_{11} = f_r + 2f_{rr} + f'_{rr} & F_{12} = 2\sqrt{2}f_{rd} & F_{22} = f_d + f_{dd} \\ a_{2u} & F_{33} = f_d - f_{dd} & F_{34} = 2f_{d\beta} - 2f'_{d\beta} & F_{44} = f_{\beta} + 2f_{\beta\beta} + f'_{\beta\beta} - f''_{\beta\beta} - 2f^{\circ}_{\beta\beta} - f^{\dagger}_{\beta\beta} \\ b_{1g} & F_{55} = f_r - 2f_{rr} + f'_{rr} \\ b_{2g} & F_{66} = f_{\gamma} - 2f_{\gamma\gamma} + f'_{\gamma\gamma} \\ b_{2u} & F_{77} = f_{\beta} - 2f_{\beta\beta} + f'_{\beta\beta} - f''_{\beta\beta} + 2f^{\circ}_{\beta\beta} - f^{\dagger}_{\beta\beta} \\ e_g & F_{88} = f_{\beta} - f'_{\beta\beta} - f''_{\beta\beta} + f^{\dagger}_{\beta\beta} \\ e_u & F_{99} = f_r - f'_{rr} & F_{9,10} = \sqrt{2}(f_{r\beta} - f''_{r\beta}) & F_{9,11} = \sqrt{2}(f_{r\gamma} - f'_{r\gamma}) \\ & F_{10,10} = f_{\beta} - f'_{\beta\beta} + f''_{\beta\beta} - f^{\dagger}_{\beta\beta} & F_{10,11} = 2(f_{\beta\gamma} - f'_{\beta\gamma}) & F_{11,11} = f_{\gamma} - f'_{\gamma\gamma} \\ & G - matrix \ elements \ (x_1 = x_2 = x_3 = x_4 = x, \ etc.); \\ a_{1g} & G_{11} = \mu_x & G_{12} = 0 & G_{22} = \mu_L \\ a_{2u} & G_{33} = \mu_L + 2\mu_m & G_{34} = -4\mu_m/r & G_{44} = 2\mu_x/r^{2+} + 8\mu_m/r^2 \end{array}$$

[1964]

Co-ordinate Analysis of $[L_2MX_4]$.

$$b_{2g} \quad G_{66} = 4\mu_x/r^2$$

$$b_{2u} \quad G_{77} = 2\mu_x/r^2$$

$$e_g \quad G_{88} = 2\mu_x/r^2 + 2\mu_L/d^2$$

$$e_u \quad G_{99} = \mu_x + 2\mu_m \quad G_{9,10} = -4\mu_m/\sqrt{2d} \quad G_{9,11} = -4\mu_m/\sqrt{2r}$$

$$G_{10,10} = 2\mu_L/d^2 + 4\mu_m/d^2 \quad G_{10,11} = 4\mu_m/rd \quad G_{11,11} = 2\mu_x/r^2 + 4\mu_m/r^2$$

Calculations.—Vibrational frequencies for representative adducts were calculated by use of the relationship $|FG-E\lambda|=0$. To maintain the same units throughout, force constants in the F matrix were multiplied by (length) or (length)² for terms of the form $f_{r\phi}$ or $f_{\phi\phi}$. respectively. Due to the lack of knowledge of force constants for molecules of this type we put all the off-diagonal terms in the potential-energy matrix equal to zero and put bending force constants (in dynes/cm.) equal to one tenth of the stretching force constants of adjacent bonds (where these have different force constants the arithmetic mean of the two stretching constants was used). For the cis-adduct f_{M-X} was also put equal to $f_{M-X'}$. The mass of the ligand was equated arbitrarily to 40 atomic weight units.

Discussion.—The results shown in Table 3 indicate that for a *cis*-adduct three highfrequency bands are to be expected, the next nearest band lying considerably below this group

Table	3.
-------	----

M–L force constant (10 ⁵ dynes/cm.)	Adduct	Frequencies (calc.) (cm. ⁻¹)							
0 0.5 1.5	L2SiF4 L2SiF4 L2SiF4	970 b ₁ 971 b ₁ 975 b ₁	$\begin{array}{c} {\bf 818} \ b_2 \\ {\bf 832} \ b_2 \\ {\bf 864} \ b_2 \end{array}$	$\begin{array}{c} 815 \ a_1 \\ 830 \ a_1 \\ 862 \ a_1 \end{array}$	$\begin{array}{c} 600 \ a_1 \\ 600 \ a_1 \\ 600 \ a_1 \end{array}$				
0 0·5 1·5	L ₂ SiCl ₄ L ₂ SiCl ₄ L ₂ SiCl ₄	529 b ₁ 534 b ₁ 544 b ₁	$\begin{array}{c} {\bf 425} \ b_2 \\ {\bf 461} \ b_2 \\ {\bf 547} \ b_2 \end{array}$	425 a ₁ 462 a ₁ 547 a ₁	258 a ₁ 258 a ₁ 258 a ₁				
0 0·5 1·5	L ₂ SiBr ₄ L ₂ SiBr ₄ L ₂ SiBr ₄	$\begin{array}{c} 422 \ b_1 \\ 430 \ b_1 \\ 446 \ b_1 \end{array}$	327 b2 384 b2 498 b2	$\begin{array}{c} 330 \ a_1 \ 385 \ a_1 \ 498 \ a_1 \end{array}$	145 a ₁ 145 a ₁ * 201 a ₁				

The four highest frequencies in cis-L₂MX₄.

Si-F = 1.62, Si-Cl = Ge-Cl = Sn-Cl = 2.13, Si-Br = 2.28, M-L = 2.0 Å $f_{Sl-F} = 4.0, f_{Sl-Cl} = 1.4, f_{Sl-Cl} = 1.4, f_{Sl-F} = 1.4, f_{Sl$ $f_{\text{Si-Br}} = 1.0, f_{\text{Ge-Cl}} = f_{\text{Sn-Cl}} = 1.4 \times 10^5 \text{ dynes/cm}.$

* Occurs twice.

(all the bands mentioned here are infrared- and Raman-active). Although in the most general case all the a_1 vibrations interact with one another, the neglect of off-diagonal terms in the F matrix gives rise to one frequency (the symmetric Si-X stretch) which is independent of the force constants except f_R . This explains the accidental degeneracy observed in Table 3 (see footnote) and which would be removed in a more general treatment. In the case of the trans-adducts, Table 4 shows that if the metal-ligand force constant is low compared with the metal-halogen, there will be one main band in the same region as the set of three absorptions mentioned for the cis-adducts. However, where the metal-ligand force constant is high, the e_u and a_{2u} vibrations (both IR active) will occur in similar regions of the spectrum. Thus, in a crystalline compound, crystal-field resolution of the e_u vibration to a doublet, plus the presence of an a_{2u} vibration, could lead to a spectrum similar to that of a *cis*-adduct. The calculations show that the e_u vibration (approximately M-X antisymmetric stretch) is relatively insensitive to the value of f_{M-L} and also (as further calculations show) to the value of the bending force constants chosen. Calculations were also performed on L_2GeCl_4 and L₂SnCl₄ using the same M-Cl distance and M-Cl force constants as in L₂SiCl₄, in order to examine the effect of increasing the mass of the central atom. It is difficult to go further in

TABLE 4.

The two highest frequencies in trans-L₂MX₄.

M-L force constant (10 ⁵ dynes/cm.)	Adduct	Frequencies (calc.) (cm1)					
1.5	L ₂ SiF ₄	975 eu	642 a _{2u}				
0·5	L_2SiCl_4	532 e _u	347 a _{2u}				
1·0	L_2SiCl_4	538 e _u	459 a _{2u}				
1·5	L_2SiCl_4	544 e _u	547 a _{2u}				
1.5	L_2SiBr_4	446 eu	537 a_{2u}				
0·5	L2GeCl4	381 e _u	258 a _{1g} , b _{1g}				
1·0	L2GeCl4	384 e _u	321 a _{2u}				
1·5	L2GeCl4	386 e _u	388 a _{2u}				
0·5	L ₂ SnCl ₄	336 e _u	258 a _{1g} , b _{1g}				
1·0	L ₂ SnCl ₄	337 e _u	279 a _{2u}				
1·5	L ₂ SnCl ₄	338 e _u	337 a _{2u}				

Bond lengths and force constants used in the calculations are shown in Table 3.

this discussion in the absence of extensive infrared and Raman spectral investigations on selected compounds. The inadequate experimental work so far carried out on such adducts suggests that the M-L force constant is low and that identification of *cis*- and *trans*-isomers *via* infrared and Raman spectroscopic examination will become routine in favourable cases, particularly where solution spectra can be obtained.

We thank Dr. Block for helpful discussion, Messrs, Sleeman and Melrose for assistance with programming the University of London Mercury Computer. and the D.S.I.R. for financial support.

Department of Chemistry, King's College, Strand, London, W.C.2. National Physical Laboratory, Teddington.

[Received, April 20th, 1964.]