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1181. A Normal Co-ordinate Analysis of the Octahedral Species cis- and
trans—[LgMX4].

By I. R. BEaTTiE, M. WEBSTER, and (in part) G. W. CHANTRY.

A normal co-ordinate analysis of the octahedral species cis- and trans-
[LaMX4] is carried out by Wilson’s method and the F- and G-matrix elements of
the secular equations are tabulated. By disregarding off-diagonal terms in the
potential-energy matrix and making reasonable assumptions about force con-
stants, vibrational frequencies for co-ordination compounds of some tetra-
halides of Group IV are approximately calculated.

WiTH the increased availability of infrared (and Raman) spectrometers capable of working
to about 50 cm.~! (and Av = 50 cm.~1) a combination of these two techniques has become a
powerful tool for examining stereochemistry in solution, particularly for the non-transition
elements where the lack of partially filled d-shells renders many other spectroscopic techniques
inapplicable. The use of infrared spectroscopy in the casium bromide region to study the
cts—trans isomerism of adducts of the type L:MX4 has outlined the importance of such
techniques.! 'We have examined the vibrations of these two isomeric forms using Wilson's
F-G matrix method.2

(1) crs-LaMX4 (Cs,).—Fig. 1 shows our choice of internal co-ordinates to describe the
vibrations of such a molecule. The corresponding f matrix which is symmetrical about the
diagonal is given in Table 1 and defines the relevant force constants. Cartesian co-ordinates
being used, the representation of the molecule after the removal of translational and
rotational degrees of freedom is

I'mol = 6a1(IR,R)+2a2(R)+351(IR,R) +4b3(IR,R)
whereas using internal co-ordinates (Fig. 1) we find
I'mol = 8ay 4 2a2+ 361+ 5b2

Fi1c. 1. Internal co-ordinates for cis-LoMXg4.

1 1. R. Beattie, G, P. McQuillan, L. Rule, and M. Webster, /., 1963, 15614; 1. R. Beattie, T. Gilson,
M. Webster, and (1n part) G. P. McQuillan /., 1964, 238; I. R. Beattie and L. Rule, J., 1965, 2995.
2 E. B. Wilson, jun., J. Chkem. Phys., 1939, 7, 1047; 1941, 9, 76.
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so that there will be three redundant co-ordinates (221 +b2). There are forty independent
force constants in the potential-energy function.
Our ortho-normal symmetry co-ordinates, using 90° angles, were

L(AR1+AR2) Sg = —(Aa A3)

a S = (A71+A7’2) 52=v2 V2

\/2
Sa=2 (Aoc+A8 Avy1—Avye)

Ss = 2\/2 (AP11+AP12+ AB21+ AB2s — Ad11— Adra— Adas — Adhoa)
Se =~ (Adi+Ady]  Se* = 2 (Aa+AS+Ay1+Ays) = 0
V2 3
Sg** = —:/—2—(ABn+A[312+A[521+A£322+A§611 +Adr2+ Ada1+ Adaz) = 0

ag S7 = E(AB11—A312—A321+A322) Sg = %(A¢11—A¢12—A¢21+A¢22)

1
by S = -\72(AR1—AR2) S10 = Q(Aﬂ11+AB12—AB21—A322)

S = 3 (Atﬁn +Ad12— Ado1 — Adhao)

bz 512 = \/2 (Ai’l—Arz)

Sz = 3 \/2 —— (AB11— AB12+ AP21 — APoz+ Adr1 — Adra+ Adar — Adpas)
514 = 72 (AYI A‘Yz) 515 = —0 (Ad]_—Adz)
Sis* = m( AB11+AR12—AB21+ AP2s+ Ad11 — Adrz+ Adar — Adpaz) = 0...(1)

* and ** Redundant co-ordinates.

Using the appropriate matrix multiplication between equations (1) and Table 1, the
following F-matrix elements result:

a Fn =fr+frr Fip = 2er Fis =fra—fr8

\'/l,_2 (fm +fr8 _fry _f’ry) Fy5 = frﬁ +f’rB “fw"f'w > Fi = frd +f'rd

Foo = fatfan  Fos = fra—fas  Foa= \%URa+fRa—‘2fRy)

Fiy =

Fos = fra+f're—fre—F're  F26 = 2fma
Fa3 = %(fa+fs—2fas) F3s = 2\/2(.[& —f5—2fay+2fsy)

Fas = fug—fas—Sopt/se s Fs¢ = faa—fis
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Fas = 3 a2y ot Yas = Yar— 43+ 2
Fas = Jlfua~tastfis=Tae=Fro=1 st io ] 40
Fae = \%(fda'*‘de_de—fldY)

1 ’ (4 ! " ! "
Fss = 5(fo+/on+/"sa+/ 08 = 2o 2 ne =2 86— ss t st Sos /041 04)

Fs¢ = fap+fap—fas—fas  Fes = fatfaa
as Frr = fo—foa—foa+/"es  Frs=fas—f'se—"s6+ e
Fag = fo—fos—f st/ 30
b1 Fog = fa—far  Fo10 = V2(fre—Sfre)  Fo,11 = V2(fre—/"re)
Fio,10 = fo+fos—f'se—f"se  F1o,11 = fas+ 86— S"e6—/ 00
Fu,u = fe+fss—fs6—f 40
bs Fis,i2 =fr—fw  Fio13=frp—=frptfrs—Srs
Fia =fo—fww  Frz,15 =fa—fra

1 ’ (4 '’ " '’ 4
Fig,13 = 5(fo—Son+Sea—S"sptfo—Sostf oo—S 00+ 2f3s—2f 86 +2f 56— 2/ p4)
Fis,14 = fyp—fya+fve—Fvs  Fi3,15 = fap—S ap+fas~F as

Fua=fy—foy  Fra,15 = fox=f'ay  F1s,15 = fa—faa

Similarly, by using standard techniques, the G-matrix elements are found to be
(¥1 = %2 = x; %3 = x4 = &'} Y, = reciprocal mass of x in atomic weight units, etc.):

a1 Gu =g/t Grz=0 Giz= —pu(l/r+1/d)
G = —\%(2/"‘2/‘5) Gis = —2un/R Gie = —{n
Gap=1y; Goz=0 Gauu=0 Gp=0 Gp=0
Gaz = @' [r*+pgd?+ (17 +1/d)?
Gas = V24, [r2— /20 [d%+ /2(1[r2—1]d®)

Gas = 2 (2fr+2/d)  Gao = pa(llr+1/d))

Gas = 20, |2+ 2ur)d+2un(Lfr—1/d)®  Gag = 7:%"—2—(1/7' ~1/d)
Gas = +/2um(1fr—1/d)
Gss = 2u,[RE+4pu/R?  Gsg = 2um/R Gee = ppt+itn

az Go7 = px/R2+2u,'[r®  Gug = /R Gss = p,/R2+2p/d?
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i Goo = py+2um  Goto = —74551.,,,/7 Go,11 = —dunf/2d
G1o0,10 = pe/R2+2p,' [r2+4u,,/r? G10,11 = — Yy /R2+4p,,frd
Gi1,11 = 2pz[d? +4py[d2 + p,/R2
by Gia,12 = Py’ + Uy G12,13 = —2pn/R
Gig,14 = —pu(lfr+1/d)  Gi2,15 = py

2
G13,13 = 2, /[RE+4p,,[R2  Gi3,14 = %’" (fr+1/d)  Giz,15 = —2u,/R

Gig,140 = @' [72 + pr/d®+u,(lfr+1/d)2  Gig,15 = —pau(lfr+1/d)

G1s,15 = pr+ tm

(2) trans-LaMXa(Ds,).—Fig. 2 shows our choice of interval co-ordinates for this molecule,
while the corresponding f matrix is given in Table 2. The representation of the molecule
after removal of translational and rotational degrees of freedom for Cartesian co-ordinates is

Fhot = 2a1,(R) +2a2,(IR) + b1,(R) + b2, (R) + b2, (inactive) +¢,(R) + 3¢, (IR),
whereas using internal co-ordinates (Fig. 2) we find
Pmol = 4a1g + 2b1y + 2.aZu + ng + b2u + eg + 381‘

resulting again in three redundant co-ordinates (2a3,+ b1,). In thiscase because of the higher
symmetry there are fewer force constants necessary, only sixteen.

L,

Fic. 2. Internal co-ordinates for trans-LoMXg4.

%
L 2
Proceeding with a similar analysis, our orthonormal symmetry co-ordinates are:
1 1
ai, S1 = 5 (A7’1+A7‘2+A7’3+A74) Sg = Vé (Ad1+Ad2)

So* = (Ayia+Ayes+Ayza+Ayig) =0

So** = %(AB11+AF512+A(313+A314+A{321+A§522+A(323+A§z4) =0
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az, 53 \/2 (Ad1 - Adz)
Sy = (AP11+AP12+AP1s+ AB1a— AB21 — A2z — A2z — ABzg)

2\/2
b]_g S5 = § (Arl——Ar2+Arg-—Ar4)

Ss* = ~\-/—2( AB11+AB12—AB13+AB14a—ABa1 + AB22 — AB2s + AB2d) =
ba, = —(AY12—AY23+AY34 Av14)
ba, S7 = 2\/2(AB11 AB12+AB13—AB14a—ABa1 + AR2z— APz + ABaa)
e, Ssa % (AB12—AB1a— AB2z+ AB24)
=1

(ABu —AB13—AB21+AB2s)
* and ** Redundant co-ordinates.

\/2 (Arl A"S) SQb == % (ATz -—Ar4)

1
S10s = §(AB11-A(313+A{321—A323) S1op = é(ABIZ_ABM'*'ABZZ"AQM)

€y S9a

(Ayi2—Ay1a+ Ayaz— Aysa)

DO =

1
Si1a = 5 (Ay12+Ayia—Ayoz—Avyae)  Suy =

F-matrix elements:
ay, Fu =f+2f+fn Fi2=2V2fy Foz=fotfu
az, Fsz=fi—faue Fse=2—2ap Faa=fo+2ee+ 06— 06— 2 s~/ Tes
by, Fss = f,—2fntf'n
ba, Fee = =2 i+ vy
bey Frr = fo—2fap+fop— e +2/ 6~ Tee
s Fas = fo—fap— s+ Tee
e, Fog = f—f'  Fo,10=v2(fs—=S")  Fo,uu = v2(fx—['r)
Fio,10 = fa—fas+f"se—fTee  Fro,11 = 2(fay—f'ay) Fi1,11 = fo—f'yy
G-matrix elements (x1 = xg = x3 = 43 = x, etc.);
ay, Gu=4y, Giz=0 Gau=yg
az, Gaz = pp+2uy  Gsa= —du,lr  Gaa = 20,/ +8u,/r?
by Gss = Yy
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b2y Gos = dp,/r®
ba, G = 2yu,/r®
g Ges = 2u,[r%+2u,/d?
Cu Gog = Ypt+2y  Go,10 = —4pp/v/2d  Go,11 = —diy[+/2r
G1o,10 = 2z /d2+4y,,/d? Gro,11 = 4uy,/rd G11,11 = 2u,[r2+ 4y, [r?

Calculations.—Vibrational frequencies for representative adducts were calculated by use
of the relationship [FG—EX| =0. To maintain the same units throughout, force constants
in the F matrix were multiplied by (length) or (length)? for terms of the form f,, or f44,
respectively. Due to the lack of knowledge of force constants for molecules of this type we
put all the off-diagonal terms in the potential-energy matrix equal to zero and put bending
force constants (in dynes/cm.) equal to one tenth of the stretching force constants of adjacent
bonds (where these have different force constants the arithmetic mean of the two stretching
constants was used). For the cis-adduct fy—x was also put equal to fyr—x-. The mass of the
ligand was equated arbitrarily to 40 atomic weight units.

Discussion.—The results shown in Table 3 indicate that for a cis-adduct three high-
frequency bands are to be expected, the next nearest band lying considerably below this group

TABLE 3.

The four highest frequencies in cis-LoMX34.

M-L force
constant Frequencies (calc.) (cm.™1)

(105 dynes/cm.)  Adduct P A \
0 LoSiFy 970 by 818 by 815 a1 600 a,
05 LoSiFy 971 by 832 be 830 a3 600 a,
1-5 LoSiFy 975 by 864 by 862 a1 600 a,
0 LzSiCh 529 b]_ 425 bg 425 ay 258 a
05 L,SiCly 534 b 461 by 462 a, 258 a1
1-5 L2SiCly 544 by 547 by 547 ay 258 a1
0 L2SiBry 422 by 327 by 330 a; 145 a3
05 L3SiBry 430 b, 384 by 385 a; 145 a;*
1- LzSiBI‘4 446 b]_ 498 bz 498 a 201 a

Si-F = 1-62, Si-Cl = Ge-Cl = Sn-Cl = 2:13, Si-Br =2-28, M-L = 2-0 A fosi-p =40, fsi-c1=1+4,
Ssi-Br = 10, fge~c1= fsn—c1 = 1-4 x 105 dynes/cm.

* Occurs twice.

{all the bands mentioned here are infrared- and Raman-active). Althoughin the most general
case all the a; vibrations interact with one another, the neglect of off-diagonal terms in the F
matrix gives rise to one frequency (the symmetric Si-X stretch) which is independent of the
force constants except fz. This explains the accidental degeneracy observed in Table 3 (see
footnote) and which would be removed in a more general treatment. In the case of the
trans-adducts, Table 4 shows that if the metal-ligand force constant is low compared with
the metal-halogen, there will be one main band in the same region as the set of three
absorptions mentioned for the cis-adducts. However, where the metal-ligand force constant
is high, the ¢, and a2, vibrations (both IR active) will occurin similar regions of the spectrum.
Thus, in a crystalline compound, crystal-field resolution of the e, vibration to a doublet, plus
the presence of an a3, vibration, could lead to a spectrum similar to that of a czs-adduct. The
calculations show that the ¢, vibration (approximately M-X antisymmetric stretch) is
relatively insensitive to the value of fy—y and also (as further calculations show) to the value
of the bending force constants chosen. Calculations were also performed on LyaGeCly and
L,SnCly using the same M—Cl distance and M-CI force constants as in LgSiCly, in order to
examine the effect of increasing the mass of the central atom. It is difficult to go further in
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TABLE 4.

The two highest frequencies in trans-LsMXg4.

M-L force
constant
(105 dynes/cm.)
1.5

Bond lengths and force constants used in the calculations are shown in Table 3.

Adduct
L,SiF4
LSiCly
LsSiCly
L2SiCly
LzSiBl‘4
L2GeCly
LzGeCh
L2GeClg
LoSnCla
LySnCly
LoSnCly

Frequencies (calc.) (cm.-1)

r

975 ey

632 e,
538 e,
544 e,
446 ¢y,
381 e,
384 ¢,
386 ey
336 ¢,
337 ey
338 ¢,

-~

642 azy

347 ay
459 agy,
547 azy

537 azy
258 ayg, b1y
321 agy,
388 ag,

258 ayg, big
279 agy
337 agy

View Online

this discussion in the absence of extensive infrared and Raman spectral investigations on
selected compounds. The inadequate experimental work so far carried out on such adducts
suggests that the M-L force constant is low and that identification of cis- and frans-isomers
via infrared and Raman spectroscopic examination will become routine in favourable cases,
particularly where solution spectra can be obtained.
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programming the University of London Mercury Computer. and the D.S.I.R. for financial support.
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