1181. A Normal Co-ordinate Analysis of the Octahedral Species cis- and trans-[$\left.\mathrm{L}_{2} \mathrm{MX}_{4}\right]$.

Abstract

By I. R. Beattie, M. Webster, and (in part) G. W. Chantry. A normal co-ordinate analysis of the octahedral species cis- and trans[$\mathrm{L}_{2} \mathrm{MX}_{4}$] is carried out by Wilson's method and the F - and G-matrix elements of the secular equations are tabulated. By disregarding off-diagonal terms in the potential-energy matrix and making reasonable assumptions about force constants, vibrational frequencies for co-ordination compounds of some tetrahalides of Group IV are approximately calculated.

With the increased availability of infrared (and Raman) spectrometers capable of working to about $50 \mathrm{~cm} .^{-1}$ (and $\Delta \nu=50 \mathrm{~cm} .^{-1}$) a combination of these two techniques has become a powerful tool for examining stereochemistry in solution, particularly for the non-transition elements where the lack of partially filled d-shells renders many other spectroscopic techniques inapplicable. The use of infrared spectroscopy in the cæsium bromide region to study the cis-trans isomerism of adducts of the type $\mathrm{L}_{2} \mathrm{MX}_{4}$ has outlined the importance of such techniques. ${ }^{1}$ We have examined the vibrations of these two isomeric forms using Wilson's $F-G$ matrix method. ${ }^{2}$
(I) cis- $L_{2} \mathrm{MX}_{4}\left(C_{2_{v}}\right)$.-Fig. 1 shows our choice of internal co-ordinates to describe the vibrations of such a molecule. The corresponding f matrix which is symmetrical about the diagonal is given in Table 1 and defines the relevant force constants. Cartesian co-ordinates being used, the representation of the molecule after the removal of translational and rotational degrees of freedom is

$$
\Gamma \mathrm{mol}=6 a_{1}(\mathrm{IR}, \mathrm{R})+2 a_{2}(\mathrm{R})+3 b_{1}(\mathrm{IR}, \mathrm{R})+4 b_{2}(\mathrm{IR}, \mathrm{R})
$$

whereas using internal co-ordinates (Fig. l) we find

$$
\Gamma \mathrm{mol}=8 a_{1}+2 a_{2}+3 b_{1}+5 b_{2}
$$

Fig. 1. Internal co-ordinates for cis- $\mathrm{L}_{2} \mathrm{MX}_{4}$.

[^0]

発足品足
ジミょ
5
4

so that there will be three redundant co-ordinates $\left(2 a_{1}+b_{2}\right)$. There are forty independent force constants in the potential-energy function.

Our ortho-normal symmetry co-ordinates, using 90° angles, were

$$
\begin{aligned}
a_{1} \quad S_{1} & =\frac{1}{\sqrt{ } 2}\left(\Delta r_{1}+\Delta r_{2}\right) \quad S_{2}=\frac{1}{\sqrt{ } 2}\left(\Delta R_{1}+\Delta R_{2}\right) \quad S_{3}=\frac{1}{\sqrt{ } 2}(\Delta \alpha-\Delta \delta) \\
S_{4} & =\frac{1}{2}\left(\Delta \alpha+\Delta \delta-\Delta \gamma_{1}-\Delta \gamma_{2}\right) \\
S_{5} & =\frac{1}{2 \sqrt{ } 2}\left(\Delta \beta_{11}+\Delta \beta_{12}+\Delta \beta_{21}+\Delta \beta_{22}-\Delta \phi_{11}-\Delta \phi_{12}-\Delta \phi_{21}-\Delta \phi_{22}\right) \\
S_{6} & =\frac{1}{\sqrt{ } 2}\left(\Delta d_{1}+\Delta d_{2}\right] \quad S_{6} *=\frac{1}{2}\left(\Delta \alpha+\Delta \delta+\Delta \gamma_{1}+\Delta \gamma_{2}\right) \equiv 0 \\
S_{6}^{* *} & =\frac{1}{2 \sqrt{ } 2}\left(\Delta \beta_{11}+\Delta \beta_{12}+\Delta \beta_{21}+\Delta \beta_{22}+\Delta \phi_{11}+\Delta \phi_{12}+\Delta \phi_{21}+\Delta \phi_{22}\right) \equiv 0 \\
a_{2} \quad S_{7} & =\frac{1}{2}\left(\Delta \beta_{11}-\Delta \beta_{12}-\Delta \beta_{21}+\Delta \beta_{22}\right) \quad S_{8}=\frac{1}{2}\left(\Delta \phi_{11}-\Delta \phi_{12}-\Delta \phi_{21}+\Delta \phi_{22}\right) \\
b_{1} \quad S_{9} & =\frac{1}{\sqrt{ } 2}\left(\Delta R_{1}-\Delta R_{2}\right) \quad S_{10}=\frac{1}{2}\left(\Delta \beta_{11}+\Delta \beta_{12}-\Delta \beta_{21}-\Delta \beta_{22}\right) \\
S_{11} & =\frac{1}{2}\left(\Delta \phi_{11}+\Delta \phi_{12}-\Delta \phi_{21}-\Delta \phi_{22}\right)
\end{aligned}
$$

$$
b_{2} \quad S_{12}=\frac{1}{\sqrt{ } 2}\left(\Delta r_{1}-\Delta r_{2}\right)
$$

$$
S_{13}=\frac{1}{2 \sqrt{ } 2}\left(\Delta \beta_{11}-\Delta \beta_{12}+\Delta \beta_{21}-\Delta \beta_{22}+\Delta \phi_{11}-\Delta \phi_{12}+\Delta \phi_{21}-\Delta \phi_{22}\right)
$$

$$
S_{14}=\frac{1}{\sqrt{ } 2}\left(\Delta \gamma_{1}-\Delta \gamma_{2}\right) \quad S_{15}=\frac{1}{\sqrt{ } 2}\left(\Delta d_{1}-\Delta d_{2}\right)
$$

$$
S_{15^{*}}=\frac{1}{2 \sqrt{ } 2}\left(-\Delta \beta_{11}+\Delta \beta_{12}-\Delta \beta_{21}+\Delta \beta_{22}+\Delta \phi_{11}-\Delta \phi_{12}+\Delta \phi_{21}-\Delta \phi_{22}\right) \equiv 0 \ldots(1)
$$

* and ** Redundant co-ordinates.

Using the appropriate matrix multiplication between equations (1) and Table 1, the following F-matrix elements result:

$$
\begin{aligned}
a_{1} \quad F_{11} & =f_{r}+f_{r r} \quad F_{12}=2 f_{r R} \quad F_{13}=f_{r \alpha}-f_{r \delta} \\
F_{14} & =\frac{1}{\sqrt{ } 2}\left(f_{r \alpha}+f_{r \delta}-f_{r \gamma}-f_{r \gamma}^{\prime}\right) \quad F_{15}=f_{r \beta}+f_{r \beta}^{\prime}-f_{r \phi}-f_{r \phi}^{\prime} ; \quad F_{16}=f_{r d}+f_{r d}^{\prime} \\
F_{22} & =f_{R}+f_{R R} \quad F_{23}=f_{R \alpha}-f_{R \delta} \quad F_{24}=\frac{1}{\sqrt{ } 2}\left(f_{R \alpha}+f_{R \delta}-2 f_{R \gamma}\right) \\
F_{25} & =f_{R \beta}+f_{R \beta}^{\prime}-f_{R \phi}-f_{R \phi}^{\prime} \quad F_{26}=2 f_{R d} \\
F_{33} & =\frac{1}{2}\left(f_{\alpha}+f_{\delta}-2 f_{\alpha \delta}\right) \quad F_{34}=\frac{1}{2 \sqrt{ } 2}\left(f_{\alpha}-f_{\delta}-2 f_{\alpha \gamma}+2 f_{\delta \gamma}\right) \\
F_{35} & =f_{\alpha \beta}-f_{\alpha \phi}-f_{\delta \beta}+f_{\delta \phi} ; \quad F_{36}=f_{d \alpha}-f_{d \delta}
\end{aligned}
$$

Similarly, by using standard techniques, the G-matrix elements are found to be ($x_{1}=x_{2}=x ; x_{3}=x_{4}=x^{\prime} ; \mu_{x}=$ reciprocal mass of x in atomic weight units, etc.):
$a_{1} \quad G_{11}=\mu_{x}^{\prime}+\mu_{m} \quad G_{12}=0 \quad G_{13}=-\mu_{m}(1 / r+1 / d)$
$G_{14}=-\frac{\mu_{m}}{\sqrt{ } 2}(2 / r-2 / d) \quad G_{15}=-2 \mu_{m} / R \quad G_{16}=-\mu_{m}$
$G_{22}=\mu_{x} \quad G_{23}=0 \quad G_{24}=0 \quad G_{25}=0 \quad G_{26}=0$
$G_{33}=\mu_{x}^{\prime} \mid r^{2}+\mu_{L} / d^{2}+\mu_{m}(1 / r+1 / d)^{2}$
$G_{34}=\sqrt{ } 2 \mu_{x}^{\prime} / r^{2}-\sqrt{ } 2 \mu_{L} / d^{2}+\sqrt{ } 2\left(1 / r^{2}-1 / d^{2}\right) \mu_{m}$
$\left.G_{35}=\frac{\mu_{m}}{R}(2 / r+2 / d) \quad G_{36}=\mu_{m}(1 / r+1 / d)\right)$
$G_{44}=2 \mu_{x}^{\prime} / r^{2}+2 \mu_{L} / d^{2}+2 \mu_{m}(1 / r-1 / d)^{2} \quad G_{45}=\frac{4 \mu_{m}}{R \sqrt{ } 2}(1 / r-1 / d)$
$G_{46}=\sqrt{ } 2 \mu_{m}(1 / r-1 / d)$
$G_{55}=2 \mu_{x} / R^{2}+4 \mu_{m} / R^{2} \quad G_{56}=2 \mu_{m} / R \quad G_{66}=\mu_{L}+\mu_{m}$

$$
G_{77}=\mu x / R^{2}+2 \mu_{x}^{\prime} / r^{2} \quad G_{78}=\mu_{x} / R^{2} \quad G_{88}=\mu_{x} / R^{2}+2 \mu_{L} / d^{2}
$$

$$
\begin{aligned}
& F_{44}=\frac{1}{4}\left(f_{\alpha}+2 f_{\gamma}+f_{\delta}+2 f_{\alpha \delta}-4 f_{\alpha \gamma}-4 f_{\delta \gamma}+2 f_{\gamma \gamma}\right) \\
& F_{45}=\frac{1}{\sqrt{ } 2}\left(f_{\alpha \beta}-f_{\alpha \phi}+f_{\delta \beta}-f_{\delta \phi}-f_{\gamma \beta}-f^{\prime}{ }_{\gamma \beta}+f_{\gamma \phi}+f^{\prime}{ }_{\gamma \phi}\right) \\
& F_{46}=\frac{1}{\sqrt{ } 2}\left(f_{d \alpha}+f_{d \delta}-f_{d \gamma}-f_{d \gamma}^{\prime}\right) \\
& F_{55}=\frac{1}{2}\left(f_{\beta}+f_{\beta \beta}+f_{\beta \beta}^{\prime}+f^{\prime \prime}{ }_{\beta \beta}-2 f_{\beta \phi}-2 f_{\beta \phi}^{\prime}-2 f^{\prime \prime}{ }_{\beta \phi}-2 f_{\beta \phi}^{\circ}+f_{\phi}+f_{\phi \phi}+f_{\phi \phi}^{\prime}+f_{\phi \phi}^{\prime \prime}\right) \\
& F_{56}=f_{d \beta}+f_{d \beta}^{\prime}-f_{d \phi}-f_{d \phi}^{\prime} \quad F_{66}=f_{d}+f_{d d} \\
& a_{2} \quad F_{77}=f_{\beta}-f_{\beta \beta}-f_{\beta \beta}^{\prime}+f_{\beta \beta}^{\prime \prime} \quad F_{78}=f_{\beta \phi}-f_{\beta \phi}^{\prime}-f^{\prime \prime}{ }_{\beta \phi}+f_{\beta \phi}^{\circ} \\
& F_{88}=f_{\phi}-f_{\phi \phi}-f_{\phi \phi}^{\prime}+f_{\phi \phi}^{\prime \prime} \\
& b_{1} \quad F_{99}=f_{R}-f_{R R} \quad F_{9,10}=\sqrt{ } 2\left(f_{R \beta}-f_{R \beta}^{\prime}\right) \quad F_{9,11}=\sqrt{ } 2\left(f_{R \phi}-f_{R \phi}^{\prime}\right) \\
& F_{10,10}=f_{\beta}+f_{\beta \beta}-f_{\beta \beta}^{\prime}-f_{\beta \beta}^{\prime \prime} \quad F_{10,11}=f_{\beta \phi}+f_{\beta \phi}^{\prime}-f_{\beta \phi}^{\prime \prime}-f_{\beta \phi}^{\circ} \\
& F_{11,11}=f_{\phi}+f_{\phi \phi}-f_{\phi \phi}^{\prime}-f_{\phi \phi}^{\prime \prime} \\
& b_{2} \quad F_{12,12}=f_{r}-f_{r r} \quad F_{12,13}=f_{r \beta}-f_{r \beta}^{\prime}+f_{r \phi}-f_{r \phi}^{\prime} \\
& F_{12,14}=f_{r \gamma}-f_{r \gamma}^{\prime} \quad F_{12,15}=f_{r d}-f_{r d}^{\prime} \\
& F_{13,13}=\frac{1}{2}\left(f_{\beta}-f_{\beta \beta}+f_{\beta \beta}^{\prime}-f_{\beta \beta}^{\prime \prime}+f_{\phi}-f_{\phi \phi}+f_{\phi \phi}^{\prime}-f_{\phi \phi}^{\prime \prime}+2 f_{\beta \phi}-2 f_{\beta \phi}^{\prime}+2 f^{\prime \prime}{ }_{\beta \phi}-2 f_{\beta \phi}^{\circ}\right) \\
& F_{13,14}=f_{\gamma \beta}-f_{\gamma \beta}^{\prime}+f_{\gamma \phi}-f_{\gamma \phi}^{\prime} \quad F_{13,15}=f_{d \beta}-f_{d \beta}^{\prime}+f_{d \dot{\phi}}-f_{d \phi}^{\prime} \\
& F_{14,14}=f_{\gamma}-f_{\gamma \gamma} \quad F_{14,15}=f_{d \gamma}-f_{d \gamma}^{\prime} \quad F_{15,15}=f_{d}-f_{d d}
\end{aligned}
$$

$$
\begin{aligned}
b_{1} \quad G_{99} & =\mu_{x}+2 \mu_{m} \quad G_{9,10}=-\frac{4}{\sqrt{ } 2} \mu_{m} / r \quad G_{9,11}=-4 \mu_{m} / \sqrt{ } 2 d \\
G_{10,10} & =\mu_{x} / R^{2}+2 \mu_{x}^{\prime} / r^{2}+4 \mu_{m} / r^{2} \quad G_{10,11}=-\mu_{x} / R^{2}+4 \mu_{m} / r d \\
G_{11,11} & =2 \mu_{L} / d^{2}+4 \mu_{m} / d^{2}+\mu_{x} / R^{2} \\
b_{2} \quad G_{12,12} & =\mu_{x}^{\prime}+\mu_{m} \quad G_{12,13}=-2 \mu_{m} / R \\
G_{12,14} & =-\mu_{m}(1 / r+1 / d) \quad G_{12,15}=\mu_{m} \\
G_{13,13} & =2 \mu_{x} / R^{2}+4 \mu_{m} / R^{2} \quad G_{13,14}=\frac{2 \mu_{m}}{R}(1 / r+1 / d) \quad G_{13,15}=-2 \mu_{m} / R \\
G_{14,14} & =\mu_{x}^{\prime} / r^{2}+\mu_{L} / d^{2}+\mu_{m}(1 / r+1 / d)^{2} \quad G_{14,15}=-\mu_{m}(1 / r+1 / d) \\
G_{15,15} & =\mu_{L}+\mu_{m}
\end{aligned}
$$

(2) trans- $\mathrm{L}_{2} \mathrm{MX}_{4}\left(D_{4}\right)$.-Fig. 2 shows our choice of interval co-ordinates for this molecule, while the corresponding f matrix is given in Table 2. The representation of the molecule after removal of translational and rotational degrees of freedom for Cartesian co-ordinates is $\Gamma_{\mathrm{mol}}=2 a_{1_{g}}(\mathrm{R})+2 a_{2_{u}}(\mathrm{IR})+b_{1_{g}}(\mathrm{R})+b_{2_{g}}(\mathrm{R})+b_{2_{u}}($ inactive $)+e_{g}(\mathrm{R})+3 e_{u}(\mathrm{IR})$,
whereas using internal co-ordinates (Fig. 2) we find

$$
\Gamma_{\mathrm{mol}}=4 a_{1 g}+2 b_{1_{g}}+2 a_{2_{u}}+b_{2 g}+b_{2_{u}}+e_{g}+3 e_{u}
$$

resulting again in three redundant co-ordinates $\left(2 a_{1_{g}}+b_{1_{g}}\right)$. In this case because of the higher symmetry there are fewer force constants necessary, only sixteen.

Fig. 2. Internal co-ordinates for trans- $\mathrm{L}_{2} \mathrm{MX}_{4}$.

Proceeding with a similar analysis, our orthonormal symmetry co-ordinates are:

$$
\begin{aligned}
a_{1 g} \quad S_{1} & =\frac{1}{2}\left(\Delta r_{1}+\Delta r_{2}+\Delta r_{3}+\Delta r_{4}\right) \quad S_{2}=\frac{1}{\sqrt{ } 2}\left(\Delta d_{1}+\Delta d_{2}\right) \\
S_{2} * & =\left(\Delta \gamma_{12}+\Delta \gamma_{23}+\Delta \gamma_{34}+\Delta \gamma_{14}\right) \equiv 0 \\
S_{2}^{* *} & =\frac{1}{2}\left(\Delta \beta_{11}+\Delta \beta_{12}+\Delta \beta_{13}+\Delta \beta_{14}+\Delta \beta_{21}+\Delta \beta_{22}+\Delta \beta_{23}+\Delta \beta_{24}\right) \equiv 0
\end{aligned}
$$

The f matrix for trans $-\mathrm{L}_{2} \mathrm{MX}_{4}$ ．

等三点

今

$a_{2 u} \quad S_{3}=\frac{1}{\sqrt{ } 2}\left(\Delta d_{1}-\Delta d_{2}\right)$

$$
S_{4}=\frac{1}{2 \sqrt{ } 2}\left(\Delta \beta_{11}+\Delta \beta_{12}+\Delta \beta_{13}+\Delta \beta_{14}-\Delta \beta_{21}-\Delta \beta_{22}-\Delta \beta_{23}-\Delta \beta_{24}\right)
$$

$b_{1 g} \quad S_{5}=\frac{1}{2}\left(\Delta r_{1}-\Delta r_{2}+\Delta r_{3}-\Delta r_{4}\right)$

$$
S_{5}^{*}=\frac{1}{2 \sqrt{ } 2}\left(-\Delta \beta_{11}+\Delta \beta_{12}-\Delta \beta_{13}+\Delta \beta_{14}-\Delta \beta_{21}+\Delta \beta_{22}-\Delta \beta_{23}+\Delta \beta_{24}\right) \equiv 0
$$

$b_{2 g} \quad S_{6}=\frac{1}{2}\left(\Delta \gamma_{12}-\Delta \gamma_{23}+\Delta \gamma_{34}-\Delta \gamma_{14}\right)$
$b_{2_{u}} \quad S_{7}=\frac{1}{2 \sqrt{ } 2}\left(\Delta \beta_{11}-\Delta \beta_{12}+\Delta \beta_{13}-\Delta \beta_{14}-\Delta \beta_{21}+\Delta \beta_{22}-\Delta \beta_{23}+\Delta \beta_{24}\right)$
$e_{g} \quad S_{8_{\mathrm{a}}}=\frac{1}{2}\left(\Delta \beta_{12}-\Delta \beta_{14}-\Delta \beta_{22}+\Delta \beta_{24}\right)$
$S_{8_{\mathrm{b}}}=\frac{1}{2}\left(\Delta \beta_{11}-\Delta \beta_{13}-\Delta \beta_{21}+\Delta \beta_{23}\right)$

* and ** Redundant co-ordinates.
$e_{u} \quad S_{9_{\mathrm{a}}}=\frac{1}{\sqrt{ } 2}\left(\Delta r_{1}-\Delta r_{3}\right) \quad S_{9_{\mathrm{b}}}=\frac{1}{\sqrt{ } 2}\left(\Delta r_{2}-\Delta r_{4}\right)$

$$
\begin{array}{ll}
S_{10_{\mathrm{a}}}=\frac{1}{2}\left(\Delta \beta_{11}-\Delta \beta_{13}+\Delta \beta_{21}-\Delta \beta_{23}\right) & S_{10_{\mathrm{b}}}=\frac{1}{2}\left(\Delta \beta_{12}-\Delta \beta_{14}+\Delta \beta_{22}-\Delta \beta_{24}\right) \\
S_{11_{\mathrm{a}}}=\frac{1}{2}\left(\Delta \gamma_{12}+\Delta \gamma_{14}-\Delta \gamma_{23}-\Delta \gamma_{34}\right) & S_{11_{\mathrm{b}}}=\frac{1}{2}\left(\Delta \gamma_{12}-\Delta \gamma_{14}+\Delta \gamma_{23}-\Delta \gamma_{34}\right)
\end{array}
$$

F-matrix elements:
$a_{1 g} \quad F_{11}=f_{r}+2 f_{r r}+f_{r r}^{\prime} \quad F_{12}=2 \sqrt{ } 2 f_{r d} \quad F_{22}=f_{d}+f_{d d}$
$a_{2_{u}} \quad F_{33}=f_{d}-f_{d d} \quad F_{34}=2 f_{d \beta}-2 f_{d \beta}^{\prime} \quad F_{44}=f_{\beta}+2 f_{\beta \beta}+f_{\beta \beta}^{\prime}-f_{\beta \beta}^{\prime \prime}-2 f_{\beta \beta}^{\circ}-f_{\beta \beta}^{\dagger}$
$b_{1_{g}} \quad F_{55}=f_{r}-2 f_{r r}+f_{r r}^{\prime}$
$b_{2 g} \quad F_{66}=f_{\gamma}-2 f_{\gamma \gamma}+f_{\gamma \gamma}^{\prime}$
$b_{2_{u}} \quad F_{77}=f_{\beta}-2 f_{\beta \beta}+f_{\beta \beta}^{\prime}-f_{\beta \beta}^{\prime \prime}+2 f_{\beta \beta}^{\circ}-f^{\dagger}{ }_{\beta \beta}$
$e_{g} \quad F_{88}=f_{\beta}-f_{\beta \beta}^{\prime}-f_{\beta \beta}^{\prime \prime}+f_{\beta \beta}^{\dagger}$
$e_{u} \quad F_{99}=f_{r}-f_{r r}^{\prime} \quad F_{9,10}=\sqrt{ } 2\left(f_{r \beta}-f_{r \beta}^{\prime \prime}\right) \quad F_{9,11}=\sqrt{ } 2\left(f_{r \gamma}-f_{r \gamma}^{\prime}\right)$

$$
F_{10,10}=f_{\beta}-f_{\beta \beta}^{\prime}+f_{\beta \beta}^{\prime \prime}-f_{\beta \beta}^{\dagger} \quad F_{10,11}=2\left(f_{\beta \gamma}-f_{\beta \gamma}^{\prime}\right) \quad F_{11,11}=f_{\gamma}-f_{\gamma \gamma}^{\prime}
$$

G-matrix elements ($x_{1}=x_{2}=x_{3}=x_{4}=x$, etc.);
$a_{1_{\sigma}} \quad G_{11}=\mu_{x} \quad G_{12}=0 \quad G_{22}=\mu_{L}$
$a_{2_{u}} \quad G_{33}=\mu_{L}+2 \mu_{m} \quad G_{34}=-4 \mu_{m} / r \quad G_{44}=2 \mu_{x} / r^{2+}+8 \mu_{m} / r^{2}$
$b_{1_{g}} \quad G_{55}=\mu_{x}$

$$
\begin{array}{ll}
b_{2 g} & G_{66}=4 \mu_{x} / r^{2} \\
b_{2 u} & G_{77}=2 \mu_{x} / r^{2} \\
e_{g} & G_{88}=2 \mu_{x} / r^{2}+2 \mu_{L} / d^{2} \\
e_{u} & G_{99}=\mu_{x}+2 \mu_{m} \quad G_{9,10}=-4 \mu_{m} / \sqrt{ } 2 d \quad G_{9,11}=-4 \mu_{m} / \sqrt{ } 2 r \\
& G_{10,10}=2 \mu_{L} / d^{2}+4 \mu_{m} / d^{2} \quad G_{10,11}=4 \mu_{m} / r d \quad G_{11,11}=2 \mu_{x} / r^{2}+4 \mu_{m} / r^{2}
\end{array}
$$

Calculations.-Vibrational frequencies for representative adducts were calculated by use of the relationship $|F G-E \lambda|=0$. To maintain the same units throughout, force constants in the F matrix were multiplied by (length) or (length) ${ }^{2}$ for terms of the form $f_{r \phi}$ or $f_{\phi \phi}$, respectively. Due to the lack of knowledge of force constants for molecules of this type we put all the off-diagonal terms in the potential-energy matrix equal to zero and put bending force constants (in dynes $/ \mathrm{cm}$.) equal to one tenth of the stretching force constants of adjacent bonds (where these have different force constants the arithmetic mean of the two stretching constants was used). For the cis-adduct $f_{\mathrm{M}-\mathrm{X}}$ was also put equal to $f_{\mathrm{M}-\mathrm{X}}$. The mass of the ligand was equated arbitrarily to 40 atomic weight units.

Discussion.-The results shown in Table 3 indicate that for a cis-adduct three highfrequency bands are to be expected, the next nearest band lying considerably below this group

Table 3.
The four highest frequencies in $c i s-\mathrm{L}_{2} \mathrm{MX}_{4}$.

M-L force constant (10^{5} dynes $/ \mathrm{cm}$.)	Adduct	Frequencies (calc.) (cm. ${ }^{-1}$)			
0	$\mathrm{L}_{2} \mathrm{SiF}_{4}$	$970 b_{1}$	$818 b_{2}$	$815 a_{1}$	$600 a_{1}$
0.5	$\mathrm{L}_{2} \mathrm{SiF}_{4}$	$971 b_{1}$	$832 b_{2}$	$830 a_{1}$	$600 a_{1}$
1.5	$\mathrm{L}_{2} \mathrm{SiF}_{4}$	$975 b_{1}$	$864 b_{2}$	$862 a_{1}$	$600 a_{1}$
0	$\mathrm{L}_{2} \mathrm{SiCl}_{4}$	$529 b_{1}$	$425{ }_{2}$	$425 a_{1}$	$258 a_{1}$
$0 \cdot 5$	$\mathrm{L}_{2} \mathrm{SiCl}_{4}$	$534 b_{1}$	$461 b_{2}$	$462 a_{1}$	$258 a_{1}$
1.5	$\mathrm{L}_{2} \mathrm{SiCl}_{4}$	$544 b_{1}$	$547 b_{2}$	$547 a_{1}$	$258 a_{1}$
0	$\mathrm{L}_{2} \mathrm{SiBr}_{4}$	$422 b_{1}$	$327 b_{2}$	$330 a_{1}$	$145 a_{1}$
$0 \cdot 5$	$\mathrm{L}_{2} \mathrm{SiBr}_{4}$	$430 b_{1}$	$384 b_{2}$	$385 a_{1}$	$145 a_{1}{ }^{*}$
1.5	$\mathrm{L}_{2} \mathrm{SiBr}_{4}$	$446 b_{1}$	$498 b_{2}$	$498 a_{1}$	$201 a_{1}$
$\begin{array}{r} \mathrm{Si}-\mathrm{F}=1.62, \\ f_{\mathrm{Si}-\mathrm{Br}}=1 \cdot 0, f_{\mathrm{Ge}-\mathrm{c}} \end{array}$	$\begin{aligned} & \mathrm{Si}-\mathrm{Cl}=\mathrm{C} \\ & =f_{\mathrm{Sn}-\mathrm{Cl}}= \end{aligned}$	$\mathrm{Sn}-\mathrm{Cl}=$ ${ }^{5}$ dynes	$-\mathrm{Br}=2 \cdot \mathrm{~s}$	$=2.0 \AA$	$0, f_{\mathrm{Si}-\mathrm{C}}$

* Occurs twice.
(all the bands mentioned here are infrared-and Raman-active). Although in the most general case all the a_{1} vibrations interact with one another, the neglect of off-diagonal terms in the F matrix gives rise to one frequency (the symmetric $\mathrm{Si}-\mathrm{X}$ stretch) which is independent of the force constants except f_{R}. This explains the accidental degeneracy observed in Table 3 (see footnote) and which would be removed in a more general treatment. In the case of the trans-adducts, Table 4 shows that if the metal-ligand force constant is low compared with the metal-halogen, there will be one main band in the same region as the set of three absorptions mentioned for the cis-adducts. However, where the metal-ligand force constant is high, the e_{u} and $a_{2 u}$ vibrations (both IR active) will occur in similar regions of the spectrum. Thus, in a crystalline compound, crystal-field resolution of the e_{u} vibration to a doublet, plus the presence of an $a_{2 u}$ vibration, could lead to a spectrum similar to that of a cis-adduct. The calculations show that the e_{u} vibration (approximately $\mathrm{M}-\mathrm{X}$ antisymmetric stretch) is relatively insensitive to the value of $f_{\mathrm{M}-\mathrm{L}}$ and also (as further calculations show) to the value of the bending force constants chosen. Calculations were also performed on $\mathrm{L}_{2} \mathrm{GeCl}_{4}$ and $\mathrm{L}_{2} \mathrm{SnCl}_{4}$ using the same $\mathrm{M}-\mathrm{Cl}$ distance and $\mathrm{M}-\mathrm{Cl}$ force constants as in $\mathrm{L}_{2} \mathrm{SiCl}_{4}$, in order to examine the effect of increasing the mass of the central atom. It is difficult to go further in

Table 4.
The two highest frequencies in trans $-\mathrm{L}_{\mathbf{2}} \mathbf{M X}_{\mathbf{4}}$.

M-L force constant		Frequencies (calc.) (cm. ${ }^{-1}$)	
(10^{5} dynes/cm.)	Adduct		
1.5	$\mathrm{L}_{2} \mathrm{SiF}_{4}$	$975 e_{u}$	$642 a_{2 u}$
0.5	$\mathrm{L}_{2} \mathrm{SiCl}_{4}$	$532 e_{u}$	$347 a_{2 u}$
1.0	$\mathrm{L}_{2} \mathrm{SiCl}_{4}$	$538 e_{u}$	$459 a_{2 u}$
1.5	$\mathrm{L}_{2} \mathrm{SiCl}_{4}$	$544 e_{u}$	$547 a_{2 u}$
1.5	$\mathrm{L}_{2} \mathrm{SiBr}_{4}$	$446 e_{u}$	$537 a_{2 u}$
0.5	$\mathrm{L}_{2} \mathrm{GeCl}_{4}$	$381 e_{u}$	$258 a_{1 g}, b_{1 g}$
1.0	$\mathrm{L}_{2} \mathrm{GeCl}_{4}$	$384 e_{u}$	$321 a_{2 u}$
1.5	$\mathrm{L}_{2} \mathrm{GeCl}_{4}$	$386 e_{4}$	$388 a_{2 u}$
$0 \cdot 5$	$\mathrm{L}_{2} \mathrm{SnCl}_{4}$	$336 e_{u}$	$258 a_{1 g}, b_{1 g}$
$1 \cdot 0$	$\mathrm{L}_{2} \mathrm{SnCl}_{4}$	$337 e_{u}$	$279 a_{2 u}$
1.5	$\mathrm{L}_{2} \mathrm{SnCl}_{4}$	$338 e_{u}$	$337 a_{2 u}$

Bond lengths and force constants used in the calculations are shown in Table 3.
this discussion in the absence of extensive infrared and Raman spectral investigations on selected compounds. The inadequate experimental work so far carried out on such adducts suggests that the M-L force constant is low and that identification of cis- and trans-isomers via infrared and Raman spectroscopic examination will become routine in favourable cases, particularly where solution spectra can be obtained.

We thank Dr. Block for helpful discussion, Messrs, Sleeman and Melrose for assistance with programming the University of London Mercury Computer. and the D.S.I.R. for financial support.

Department of Chemistry, King's College, Strand, London, W.C.2.
National Physical Laboratory, Teddington.
[Received, April 20th, 1964.]

[^0]: ${ }^{1}$ I. R. Beattie, G, P. McQuillan, L. Rule, and M. Webster, J., 1963, 1514; I. R. Beattie, T. Gilson, M. Webster, and (in part) G. P. McQuillan J., 1964, 238; I. R. Beattie and L. Rule, J., 1965, 2995.
 2^{2} E. B. Wilson, jun., J. Chem. Phys., 1939, 7, 1047; 1941, 9, 76.

